300-135 Exam Questions - Online Test


300-135 Premium VCE File

Learn More 100% Pass Guarantee - Dumps Verified - Instant Download
150 Lectures, 20 Hours

certleader.com

Exam Code: 300 135 tshoot (Practice Exam Latest Test Questions VCE PDF)
Exam Name: Troubleshooting and Maintaining Cisco IP Networks (TSHOOT)
Certification Provider: Cisco
Free Today! Guaranteed Training- Pass tshoot 300 135 pdf Exam.

Q31. - (Topic 9) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

The fault condition is related to which technology? 

A. BGP 

B. NTP 

C. IP NAT 

D. IPv4 OSPF Routing 

E. IPv4 OSPF Redistribution 

F. IPv6 OSPF Routing 

G. IPv4 layer 3 security 

Answer: A Explanation: 

On R1 under router the BGP process Change neighbor 209.56.200.226 remote-as 65002 statement to neighbor 209.65.200.226 remote-as 65002 


Q32. - (Topic 10) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing scheme, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolated the cause of this fault and answer the following questions. 

The fault condition is related to which technology? 

A. BGP 

B. NTP 

C. IP NAT 

D. IPv4 OSPF Routing 

E. IPv4 OSPF Redistribution 

F. IPv6 OSPF Routing 

G. IPv4 layer 3 security 

Answer:

Explanation: 

On R1 we need to add the client IP address for reachability to server to the access list that is used to specify which hosts get NATed. 

Topic 11, Ticket 6 : R1 ACL 

Topology Overview (Actual Troubleshooting lab design is for below network design) 

. Client Should have IP 10.2.1.3 

. EIGRP 100 is running between switch DSW1 & DSW2 

. OSPF (Process ID 1) is running between R1, R2, R3, R4 

. Network of OSPF is redistributed in EIGRP 

. BGP 65001 is configured on R1 with Webserver cloud AS 65002 

. HSRP is running between DSW1 & DSW2 Switches 

The company has created the test bed shown in the layer 2 and layer 3 topology exhibits. 

This network consists of four routers, two layer 3 switches and two layer 2 switches. 

In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1. 

DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary. 

R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP's network. Because the company's address space is in the private range. 

R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network. 

ASW1 and ASW2 are layer 2 switches. 

NTP is enabled on all devices with 209.65.200.226 serving as the master clock source. 

The client workstations receive their IP address and default gateway via R4's DHCP server. 

The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2. 

In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6. 

DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE. 

The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistribution is enabled where necessary. 

Recently the implementation group has been using the test bed to do a ‘proof-of-concept' on several implementations. This involved changing the configuration on one or more of the devices. You will be presented with a series of trouble tickets related to issues introduced during these configurations. 

Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution. 

Each ticket has 3 sub questions that need to be answered & topology remains same. 

Question-1 Fault is found on which device, 

Question-2 Fault condition is related to, 

Question-3 What exact problem is seen & what needs to be done for solution 

Client is unable to ping IP 209.65.200.241… 

Solution 

Steps need to follow as below:-

. When we check on client 1 & Client 2 desktop we are not receiving DHCP address from R4 

. Ipconfig ----- Client will be receiving IP address 10.2.1.3 

. IP 10.2.1.3 will be able to ping from R4 , R3, R2, R1 

. Look for BGP Neighbourship 

. Sh ip bgp summary ----- State of BGP will be in active state. This means connectivity issue between serial 

. Check for running config. i.e sh run --- over here check for access-list configured on interface as BGP is down (No need to check for NAT configuration as its configuration should be right as first need to bring BGP up) 

. In above snapshot we can see that access-list of edge_security on R1 is not allowing wan IP network 

. Change required: On R1, we need to permit IP 209.65.200.222/30 under the access list. 


Q33. - (Topic 18) 

The implementations group has been using the test bed to do a ‘proof-of-concept' that requires both Client 1 and Client 2 to access the WEB Server at 209.65.200.241. After several changes to the network addressing, routing schemes, DHCP services, NTP services, layer 2 connectivity, FHRP services, and device security, a trouble ticket has been opened indicating that Client 1 cannot ping the 209.65.200.241 address. 

Use the supported commands to isolate the cause of this fault and answer the following question. 

The fault condition is related to which technology? 

A. NTP 

B. IP DHCP Server 

C. Ipv4 OSPF Routing 

D. Ipv4 EIGRP Routing. 

E. Ipv4 Route Redistribution. 

F. Ipv6 RIP Routing 

G. Ipv6 OSPF Routing 

H. Ipv4 and Ipv6 Interoperability 

I. Ipv4 layer 3 security. 

Answer:

Explanation: 

On R4 the DHCP IP address is not allowed for network 10.2.1.0/24 which clearly shows the problem lies on R4 & the problem is with DHCP 

Topic 19, Ticket 14: IPv6 Routing Issue 1

Topology Overview (Actual Troubleshooting lab design is for below network design)

-Client Should have IP 10.2.1.3

-EIGRP 100 is running between switch DSW1 & DSW2

-OSPF (Process ID 1) is running between R1, R2, R3, R4

-Network of OSPF is redistributed in EIGRP

-BGP 65001 is configured on R1 with Webserver cloud AS 65002

-HSRP is running between DSW1 & DSW2 Switches

The company has created the test bed shown in the layer 2 and layer 3 topology exhibits.

This network consists of four routers, two layer 3 switches and two layer 2 switches.

In the IPv4 layer 3 topology, R1, R2, R3, and R4 are running OSPF with an OSPF process number 1.

DSW1, DSW2 and R4 are running EIGRP with an AS of 10. Redistribution is enabled where necessary.

R1 is running a BGP AS with a number of 65001. This AS has an eBGP connection to AS 65002 in the ISP's network. Because the company's address space is in the private range.

R1 is also providing NAT translations between the inside (10.1.0.0/16 & 10.2.0.0/16) networks and outside (209.65.0.0/24) network.

ASW1 and ASW2 are layer 2 switches.

NTP is enabled on all devices with 209.65.200.226 serving as the master clock source.

The client workstations receive their IP address and default gateway via R4's DHCP server.

The default gateway address of 10.2.1.254 is the IP address of HSRP group 10 which is running on DSW1 and DSW2.

In the IPv6 layer 3 topology R1, R2, and R3 are running OSPFv3 with an OSPF process number 6.

DSW1, DSW2 and R4 are running RIPng process name RIP_ZONE.

The two IPv6 routing domains, OSPF 6 and RIPng are connected via GRE tunnel running over the underlying IPv4 OSPF domain. Redistrution is enabled where necessary.

Recently the implementation group has been using the test bed to do a ‘proof-of-concept' on several implementations. This involved changing the configuration on one or more of the devices.

You will be presented with a series of trouble tickets related to issues introduced during these configurations.

Note: Although trouble tickets have many similar fault indications, each ticket has its own issue and solution.

Each ticket has 3 sub questions that need to be answered & topology remains same.

Question-1 Fault is found on which device,

Question-2 Fault condition is related to,

Question-3 What exact problem is seen & what needs to be done for solution

===============================================================================


Q34. - (Topic 1)

Which three features are benefits of using GRE tunnels in conjunction with IPsec for building siteto-site VPNs? (Choose three.)

A. allows dynamic routing over the tunnel

B. supports multi-protocol (non-IP) traffic over the tunnel

C. reduces IPsec headers overhead since tunnel mode is used

D. simplifies the ACL used in the crypto map

E. uses Virtual Tunnel Interface (VTI) to simplify the IPsec VPN configuration

Answer: A,B,D


Q35. - (Topic 21) 

The implementation group has been using the test bed to do an IPv6 'proof-of-concept1.

After several changes to the network addressing and routing schemes, a trouble ticket has been opened indicating that the loopback address on R1 (2026::111:1) is not able to ping the loopback address on DSW2 (2026::102:1).

Use the supported commands to isolate the cause of this fault and answer the following question.

On which device is the fault condition located?

A. R1

B. R2

C. R3

D. R4

E. DSW1

F. DSW2

G. ASW1

H. ASW2

Answer: C

Explanation:

Start to troubleshoot this by pinging the loopback IPv6 address of DSW2 (2026::102:1). This can be pinged from DSW1, and R4, but not R3 or any other devices past that point. If we look at the routing table of R3, we see that there is no OSPF neighbor to R4:

This is due to mismatched tunnel modes between R3 and R4:

Problem is with R3, and to resolve the issue we should delete the "tunnel mode ipv6" under interface Tunnel 34.


Q36. - (Topic 2) 

A customer network engineer has made configuration changes that have resulted in some loss of connectivity. You have been called in to evaluate a switch network and suggest resolutions to the problems. 

Refer to the topology. 

SW1 Switch Management IP address is not pingable from SW4. What could be the issue? 

A. Management VLAN not allowed in the trunk links between SW1 and SW4 

B. Management VLAN not allowed in the trunk links between SW1 and SW2 

C. Management VLAN not allowed in the trunk link between SW2 and SW4 

D. Management VLAN ip address on SW4 is configured in wrong subnet 

E. Management VLAN interface is shutdown on SW4 

Answer:

Explanation: 

In the network, VLAN 300 is called the Management VLAN. Based on the configurations shown below, SW1 has VLAN 300 configured with the IP address of 192.168.10.1/24, while on SW4 VLAN 300 has an IP address of 192.168.100.4/24, which is not in the same subnet. 


Q37. - (Topic 19) 

The implementation group has been using the test bed to do an IPv6 'proof-of-concept1. After several changes to the network addressing and routing schemes, a trouble ticket has been opened indicating that the loopback address on R1 (2026::111:1) is not able to ping the loopback address on DSW2 (2026::102:1).

Use the supported commands to isolate the cause of this fault and answer the following question.

The fault condition is related to which technology?

A. NTP

B. IPv4 OSPF Routing

C. IPv6 OSPF Routing

D. IPv4 layer 3 security

Answer: C

Explanation:

Since we are unable to ping the IPv6 address, the problem is with IPv6 OSPF Routing.


Q38. - (Topic 1)

When troubleshooting an EIGRP connectivity problem, you notice that two connected EIGRP routers are not becoming EIGRP neighbors. A ping between the two routers was successful. What is the next thing that should be checked?

A. Verify that the EIGRP hello and hold timers match exactly.

B. Verify that EIGRP broadcast packets are not being dropped between the two routers with the show ip EIGRP peer command.

C. Verify that EIGRP broadcast packets are not being dropped between the two routers with the show ip EIGRP traffic command.

D. Verify that EIGRP is enabled for the appropriate networks on the local and neighboring router.

Answer: D